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Abstract

Despite of the remarkable performance, modern deep
neural networks are inevitably accompanied with a signif-
icant amount of computational cost for learning and de-
ployment, which may be incompatible with their usage on
edge devices. Recent efforts to reduce these overheads in-
volves pruning and decomposing the parameters of vari-
ous layers without performance deterioration. Inspired by
several decomposition studies, in this paper, we propose a
novel energy-aware pruning method that quantifies the im-
portance of each filter in the network using nuclear-norm
(NN). Proposed energy-aware pruning leads to state-of-the
art performance for Top-1 accuracy, FLOPs, and parame-
ter reduction across a wide range of scenarios with multi-
ple network architectures on CIFAR-10 and ImageNet af-
ter fine-grained classification tasks. On toy experiment, de-
spite of no fine-tuning, we can visually observe that NN not
only has little change in decision boundaries across classes,
but also clearly outperforms previous popular criteria. We
achieve competitive results with 40.4/49.8% of FLOPs and
45.9/52.9% of parameter reduction with 94.13/94.61% in
the Top-1 accuracy with ResNet-56/110 on CIFAR-10, re-
spectively. In addition, our observations are consistent for
a variety of different pruning setting in terms of data size
as well as data quality which can be emphasized in the sta-
bility of the acceleration and compression with negligible
accuracy loss. Our code is available at https://github.com/
nota-github/nota-pruning-rank.
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Figure 1. Framework of the proposed method for pruning. After
flattening/concatenating each filter maps for all inputs, SVD is ap-
plied to retrieve nuclear-norm values. Then the actual pruning pro-
cess takes place as presented in the bottom-most column, accord-
ing to the ordering calculated for each layer.

1. Introduction

Deep Neural Networks (DNNs) have achieved great suc-
cesses in various applications such as image classifica-
tion [43], detection [44], and semantic segmentation [46].
However, these modern networks require significant com-
putational costs and storage, making it difficult to deploy
in real-time applications without the support of a high-
efficiency Graphical Processing Unit (GPU). To address this
issue, various network compression methods such as prun-
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ing [10, 33, 12, 53], quantization [17, 27], low-rank approx-
imation [21, 5], and knowledge distillation [13, 37] are con-
stantly being developed.

Among diverse network compression strategies, network
pruning has steadily grown as an indispensable tool, aiming
to remove the least important subset of network units (i.e.
neurons or filters) in the structured or unstructured manner.
For network pruning, it is crucial to decide how to identify
the “irrelevant” subset of the parameters meant for dele-
tion. To address this issue, previous researches have pro-
posed specific criteria such as Taylor approximation, gradi-
ent, weight, Layer-wise Relevance Propagation (LRP), and
others to reduce complexity and computation costs in the
network. Recently several studies, inspired by low-rank ap-
proximation which can efficiently reduce the rank of the
corresponding matrix, have been started from the viewpoint
of pruning [28, 26]. Indeed, pruning and decomposition
have a close connection like two sides of the same coin from
perspective of compression [26]. For more details, related
works are introduced in Section 2.

The concept of the decomposition-based compression
studies proposes that the network is compressed by decom-
posing a filter into a set of bases with singular values on a
top-k basis, in which singular values represent the impor-
tance of each basis [48]. In other word, we can say that de-
composition allows to optimally conserve the energy, which
can be a summation of singular values [1], of the filter in the
network. From the macroscopic point of view, we here be-
lieve that the energy-aware components could be used as an
efficient criterion to quantify the filters in the network.

We propose an energy-aware pruning method that mea-
sures the importance scores of the filters by using energy-
based criterion inspired by previous filter decomposition
methods. More specifically, we compute nuclear-norm
(NN) derived from singular values decomposition (SVD)
to efficiently and intuitively quantify the filters into an en-
ergy cost. Our experimental results show that the NN based
pruning can lead the state-of-the-art performance regard-
less of network architectures and datasets, assuming that the
more/less energy contains, the better/worse filter stands for.
We prune the filters with the least energy throughout the
network. A detailed description of the overall framework of
our energy-aware pruning process is shown in Fig. 1.

To summarize, our main contributions are:

• We introduce a novel energy-aware pruning criterion
for filter pruning which remove filters with lowest
nuclear-norm that can be quantified which lead to ef-
ficiently reduce network complexity. Results prove the
efficiency and effectiveness of our proposed method
through extensive experiment.

• Nuclear-norm based energy-aware pruning achieves
state-of-the-art performances with similar compres-
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Figure 2. Comparing between accuracy and FLOPs (top) and ac-
curacy and total number of remained parameters (bottom) with
five network architectures (VGG-16, ResNet-56, ResNet-110,
DenseNet-40, and GoogLeNet) on CIFAR-10 dataset. Top-left is
better performance.

sion ratio over a variety of existing pruning approaches
[11, 12, 16, 28, 30, 32, 34, 50, 51] on all kinds of net-
work architectures, as shown in Figure 2.

• Furthermore, the proposed NN-based pruning ap-
proach can lead high stability over the quality and
quantity of the data, which is great beneficial to prac-
tical industry aspect. This property of the proposed
method is described in detail in 4.5.

The rest of the paper is organized as follows. Section 2
summarizes related works for network compression. Sec-
tion 3 describes the details of the proposed pruning method.
The experimental results are illustrated and discussed in
Section 4. And Section 5 gives a conclusion and an outlook
to future work.

2. Related Works
Filter Decomposition. Filter decomposition approaches

decompose network matrices into several bases for vector
spaces to estimate the informative parameters of the DNNs
with low-rank approximation/factorization, thus reducing
computation cost of the network [25] such as SVD [5], CP
decomposition [21], Tucker decomposition [19], and others,
[18] suggests methods to approximate convolutional opera-
tions by representing the weight matrix as smaller bases set



of 2D separable filters without changing the original num-
ber of filters. In [40], Principal Component Analysis (PCA)
was applied on max-pooled and flattened feature maps, to
compute the amount of information to be preserved in each
layer among all layers, enabling integration with each other.

Filter Pruning. Network filter pruning removes redun-
dant or non-informative filters which are less-informative
for performance from the given model at once (one-shot
pruning) or iteratively (iterative pruning). The most network
filter pruning techniques make filters sparse by removing
connections and adopt an appropriate criterion for discrim-
inating whether it is crucial or not. Obviously it is a criti-
cal point to decide how to quantify the importance of the
filters in the current state of the model for deletion. In pre-
vious studies, pruning criteria have been typically proposed
based on the magnitude of 1) mostly weights with l1 / l2-
norm [7, 23], 2) gradients [41], 3) Taylor expansion / 2nd

partial derivative (a.k.a. Hessian matrix) [22, 36], 4) Layer-
wise relevance propagation (LRP) [49], and 4) other crite-
ria [50, 32]. For more detail in magnitude-based pruning,
please refer to [49].

Pruning by decomposition. Concurrently with our
work, there is a growing interest in compressing DNNs mo-
tivated by decomposition in terms of pruning as well as
fusion approach [24, 26, 47, 28]. Due to the close con-
nection between two different compression methods, those
works demonstrate that decomposition-based approach can
enhance the performance for pruning in efficiently com-
pressing the model even in the filter level. [24] proposes
a hardware-friendly CNN model compression framework,
PENNI, which applies filter decomposition to perform a
small number of basis kernel sharing and adaptive bases and
coefficients with sparse constraints. [26] proposes a unified
framework that allows to combine the pruning and the de-
composition approaches simultaneously using group spar-
sity. [47] proposed Trained Ranking Pruning (TRP) which
integrates low-rank approximation and regularization into
the training process. In order to constrain the model into
low-rank space, they adopt a stochastic sub-gradient descent
optimized nuclear-norm regularization which is utilized as
a different purpose from our proposed method. Similarly to
our work, [28] proposes a high rank-based pruning method
as a criterion by computing the full-rank of each feature
map from SVD layer-by-layer, which leads to inconsistent
rank order regardless of batch size.

3. Method

3.1. Preliminaries

From a pre-trained CNN model, we first define train-
able parameters, weights as Wl = {w1

l ,w
2
l , . . . ,w

cl
l } ∈

Rcl×cl−1×k×k, where cl−1 and cl denote the number of the
input and output channels and k is the the height/width of

the squared kernel at lth convolutional layer. Please note
that for the sake of the simplicity, we omit biases term here.

Pruning has been started with a pretrained full-size net-
work f(X ;W) which is overparameterized throughout the
network. For DNN, our original objective function is to
minimize our loss given dataset and parameters W.

min
W
L(Y, f(X ;W)) (1)

where X ∈ {x0,x1, . . . ,xN} and Y ∈ {y0,y1, . . . ,yN}
represent a set of paired training inputs and its labels, re-
spectively. N denotes the total number of batches.

In order to get structured pruning, sparsity regularization
is added in Equation 1 as follows,

min
W
L(Y, f(X ;W)) + λR(W) (2)

where R denotes sparsity regularization function and λ
indicates a regularization factor. Here, the main issue of the
pruning is how to define R function under the given con-
straints.

Algorithm 1 Energy-Aware Pruning
1: Input: pre-trained model f , training data X , pruning

ratio r, and pruning threshold t
2: while t not reached do
3: // Assess network substructure importance;
4: for all BN layer in f do
5: for all channels in BN layer do
6: B compute equation 4 and 5
7: end for
8: end for
9: // Identify and remove least important filters in

groups of r;
10: B remove r channels with the lowest ||x̂||∗ from

f
11: B remove its corresponding connections of each re-

moved channel
12: if desired then
13: // Optional fine-tuning to recover performance;
14: B fine-tune f ′ on X
15: end if
16: end while
17: return pruned model f ′

3.2. Energy-based Filter Pruning Approach

We define a R function by adopting an energy-aware
pruning criterion. Our hypothesis is that the more energy
a filter has, the larger amount of information it contains.
In other words, we could define an regularization function
that can minimize the difference between the energies from
the pre-trained model and the pruned model. Therefore, in
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Figure 3. Qualitative Comparison of the impact of the pruning criteria – Original model, Weight, Gradient, Taylor, LRP, and Nuclear-norm
(from left top to right bottom) –on the decision function with toy dataset (k = 4). Scores in bracket indicate accuracy after pruning 33.3%
filters of the original model followed by no fine-tuning.

terms of energy efficiency, R in Equation 2 can be defined
as

R(W) = |E(X ;W)−E(X ;W′)| (3)

where E(·) = {e1, e2, . . . , el} indicate total amount of en-
ergy in the network. And each el denotes the amount of
energy at layer l and is computed on the corresponding fea-
ture map using our criterion which will be discussed thor-
oughly afterwards. Additionally, we introduce a pruning
mask M ∈ {0, 1}cl which determines if a filter is remained
or pruned during feed-forward propagation such that when
M is vectorized: W′ = W�M, where is an element-wise
multiplication between W and M. And here, we assume
that each el can be approximated by el ≈ ||wl||∗ com-
puted by decomposition approach. Here, we adopt the de-
composition approach, SVD, to quantify filter-wise energy
consumption. SVD is the basis for many related techniques
in dimensionality reduction used to obtain reduced order
models (ROMs). For pruning, SVD helps finding the best
k-dimensional perpendicular subspace with respect to the
dataset in each point. Especially, the singular values plays
an important role in algebraic complexity theory. That is,
the singular value represents the energy of each rank-one
matrix. Singular values represent the importance of its as-
sociated rank-one matrix.

A previous research showed that filter pruning and de-
composition are highly related from the viewpoint of com-
pact tensor approximation [26]. There is the hinge point be-
tween both strategies in investigating a compact approxima-
tion of the tensors despite of the usage of different operation
in a variety of the application scenarios. Decomposition is
done to quantify the energy on the output channels in batch
normalization (BN) layers. Additional to the efficient trade-

off of channel-level sparsity, BN provides normalized val-
ues of the internal activation using mini-batch statistics to
any scale [32]. This process is achieved by applying 3D fil-
ters x̂l ∈ Rcl×h×w, where h and w denote the height and
width at lth BN layer, respectively. The supercript l in wl

is omitted for readability. Based on x̂, we first reshape the
original 3D tensor into a 2D tensor x̂ ∈ Rcl×hw

From the SVD, a channel output at lth layer can be de-
composed as follow,

x̂ = USV T =

N∑
i=1

σiuiv
T
i (4)

where U and V denote the left and right singular vector
matrix respectively and S indicates the diagonal matrix of
singular values σn where S = diag(σ1, σ2, . . . , σN ).

||x̂||∗ =
N∑
i=1

σi (5)

||x̂||∗ denotes nuclear-norm, the sum of the singular val-
ues which can represent the energy of the model [38]. Here,
based on our hypothesis, a useful rule of thumb for the
efficient filter pruning is to optimally preserve the energy
throughout the network. In this respect, based on equation 5,
we can not only evaluate the distribution, but also estimate
the contribution of the feature spaces simultaneously, which
can be applicable for a pruning criterion. Additionally, it
provides necessary and sufficient conditions for rank con-
sistency while minimizing the loss of the model [2]. For
this reason, it leads to achieve the consistent results regard-
less data quality as well as data quantity.

The procedure based on the pruning method is outlined
in Algorithm 1,



4. Experiments
4.1. Experimental Setup

Models and Dataset We demonstrate the effectiveness
of the proposed energy-aware pruning with nuclear-norm
on four types of pre-trained feed-forward deep neural net-
work architectures from various perspective comparison
studies: 1) simple CNNs (VGG-16 [39] on CIFAR-10 [20]),
2) Residual networks (ResNet-56 and ResNet-110 [8] on
CIFAR-10 and ResNet-50 on ImageNet [4]), 3) Inception
networks (GoogLeNet [42] on CIFAR-10), 4) Dense net-
works (DenseNet-40 [15] on CIFAR-10). The resolution
of each image is 32×32 (CIFAR-10) and 224×224 (Ima-
geNet) pixels, respectively.

Implementation details We conduct all pruning ex-
periments on Pytorch 1.6 under Intel(R) Xeon(R) Silver
4210R CPU 2.40GHz and NVIDIA RTX 2080Ti with 12GB
for GPU processing. After one-shot pruning, we adopt
the Stochastic Gradient Descent (SGD) algorithm as an
optimization function. For both the CIFAR-10 and Ima-
geNet, over-parameterized models are pruned at a time
and fine-tuned by using 200 epochs with early stopping
with 0.01 initial learning rate, scheduled by using cosine
scheduler. Cross entropy is selected as a loss function. And
the momentum and the weight decay factor are 0.9 and
5 × 10−4, respectively. And we set the fine-tuning batch
size of 128. For pruning, we adopt the built-in function
torch.nn.utils.prune in Pytorch throughout the experiments.

Evaluation metrics For a fair competition, we measure
Top-1 accuracy (CIFAR-10 and ImageNet) and Top-5 accu-
racy (ImageNet only) of the pruned network as baselines.
Also, we computed the Floating point operations (FLOPs)
as well as total remained number of parameters (params) to
precisely compare the efficiency of the proposed criterion
in terms of computational efficiency.

4.2. Results on Toy experiment

First, we start by comparing the properties and effec-
tiveness of the several pruning criteria on toy dataset. In
addition to our proposed criterion (i.e. nuclear-norm), we
also evaluate against pruning methods that use various prop-
erty important based pruning criteria on the toy dataset:
weight [23], gradient [41], Taylor [36], and layer-wise rel-
evance propagation (LRP) [49]. We generated 4-class toy
datasets from Scikit-Learn 1 toolbox.

Each generated consists of 1000 training samples per
class in 2D domain. We firstly construct a simple model
and train the model. The model we constructed is stacked
with a sequence of three consecutive ReLU-activated dense
layers with 1000 hidden neurons each. We have also added
a Dropout function with the probability of 50%. For the toy
experiment, all structures are as follows,

1https://scikit-learn.org/stable/datasets/toy dataset.html

Table 1. Pruning results of five network architectures on CIFAR-
10. Scores in brackets of “FLOPs” and “Params” denote the com-
pression ratio of FLOPs and parameters in the compressed models.

Criterion Pruned Gap FLOPs (%) Params (%)
VGG-16-BN

L1 [23] 93.40 0.15 206.00M (34.3) 5.40M (64.0)
Variational CNN [51] 93.18 -0.07 190.00M (39.4) 3.92M (73.3)

SSS [16] 93.02 -0.94 183.13M (41.6) 3.93M (73.8)
GAL-0.05 [30] 92.03 -1.93 189.49M (39.6) 3.36M (77.6)
GAL-0.1 [30] 90.73 -3.23 171.89M (45.2) 2.67M (82.2)

HRank-53 [28] 93.43 -0.53 145.61M (53.5) 2.51M (82.9)
HRank-65 [28] 92.34 -1.62 108.61M (65.3) 2.64M (82.1)

Propose method 93.48 -0.48 104.67M (66.6) 2.86M (80.9)
ResNet-56

L1 [23] 93.06 0.02 90.90M (27.6) 0.73M (14.1)
NISP [50] 93.01 -0.25 81.00M (35.5) 0.49M (42.4)

GAL-0.6 [30] 92.98 -0.28 78.30M (37.6) 0.75M (11.8)
GAL-0.8 [30] 90.36 -2.90 49.99M (60.2) 0.29M (65.9)
He et al. [12] 90.80 -2.00 62.00M (50.6) N/A

HRank-29 [28] 93.52 0.26 88.72M (29.3) 0.71M (16.8)
HRank-50 [28] 93.17 -0.09 62.72M (50.0) 0.49M (42.4)

SCOP [45] 93.64 -0.06 N/A (56.3) N/A (56.0)
Propose method 94.13 0.87 74.83M (40.4) 0.46M (45.9)

ResNet-110
L1 [23] 93.30 -0.20 155.00M (38.7) 1.16M (32.6)

GAL-0.5 [30] 92.55 -0.95 130.20M (48.5) 0.95M (44.8)
HRank-41 [28] 94.23 0.73 148.70M (41.2) 1.04M (39.4)
HRank-58 [28] 93.36 -0.14 105.70M (58.2) 0.70M (59.2)

Propose method 94.61 1.11 126.96M (49.8) 0.81M (52.9)
GoogLeNet

Random 94.54 -0.51 0.96B (36.8) 3.58M (41.8)
L1 [23] 94.54 -0.51 1.02B (32.9) 3.51M (42.9)

APoZ [14] 92.11 -2.94 0.76B (50.0) 2.85M (53.7)
GAL-0.5 [30] 93.93 -1.12 0.94B (38.2) 3.12M (49.3)

HRank-54 [28] 94.53 -0.52 0.69B (54.9) 2.74M (55.4)
HRank-70 [28] 94.07 -0.98 0.45B (70.4) 1.86M (69.8)

Propose method 95.11 0.06 0.45B (70.4) 1.63M (73.5)
DenseNet-40

Network Slimming [32] 94.81 -0.92 190.00M (32.8) 0.66M (36.5)
GAL-0.01 [30] 94.29 -0.52 182.92M (35.3) 0.67M (35.6)
GAL-0.05 [30] 93.53 -1.28 128.11M (54.7) 0.45M (56.7)

Variational CNN [51] 93.16 -0.95 156.00M (44.8) 0.42M (59.7)
HRank-40 [28] 94.24 -0.57 167.41M (40.8) 0.66M (36.5)

Propose method 94.62 -0.19 167.41M (40.8) 0.66M (36.5)

• Dense (1000) → ReLU → Dropout (0.5) →
Dense (1000)→ ReLU→ Dense (1000)→ ReLU→
Dense (k)

The model which takes 2D inputs will take an output which
is the same number of classes (i.e. = 4). We then sample a
number of new datapoints (unseen during training) for the
computation of the pruning criteria. For pruning, we remove
a fixed number of 1000 of 3000 hidden neurons with the
least relevance for prediction according to each criterion.
This is equivalent to removing 1000 learned filters from the
model. After pruning, we observed the changes in the deci-
sion boundary area and re-evaluated classification accuracy
on the original 4000 training samples with pruned model.
Please note that after pruning, we directly show the decision
boundary and accuracy as it is without fine-tuning step.

Figure 3 shows the data distributions of the generated
multi-class toy datasets to see the qualitative impact to the



Table 2. Pruning results on ResNet-50 with ImageNet. Scores in brackets of “FLOPs” and “Params” denote the compression ratio of FLOPs
and parameters in the compressed models.

ResNet-50

Criterion Top-1 Acc (%) Top-5 Acc (%) FLOPs ↓ (%) Params ↓ (%)Pruned Gap Pruned Gap
He et al. [12] 72.30 -3.85 90.80 -1.40 2.73B (33.25) N/A

ThiNet-50 [34] 72.04 -0.84 90.67 -0.47 N/A (36.8) N/A (33.72)
SSS-26 [16] 71.82 -4.33 90.79 -2.08 2.33B (43.0) 15.60M (38.8)
SSS-32 [16] 74.18 -1.97 91.91 -0.96 2.82B (31.0) 18.60M (27.0)

GAL-0.5 [30] 71.95 -4.20 90.94 -1.93 2.33B (43.0) 21.20M (16.8)
GAL-0.5-joint [30] 71.80 -4.35 90.82 -2.05 1.84B (55.0) 19.31M (24.2)

GAL-1 [30] 69.88 -6.27 89.75 -3.12 1.58B (61.3) 14.67M (42.4)
GAL-1-joint [30] 69.31 -6.84 89.12 -3.75 1.11B (72.8) 10.21M (59.9)

GDP-0.5 [29] 69.58 -6.57 90.14 -2.73 1.57B (61.6) N/A
SFP [9] 74.61 -1.54 92.06 -0.81 2.38B (41.8) N/A

AutoPruner [33] 74.76 -1.39 92.15 -0.72 2.09B (48.7) N/A
FPGM [10] 75.59 -0.56 92.27 -0.60 2.55B (37.5) 14.74 (42.2)
Taylor [35] 74.50 -1.68 N/A N/A N/A (44.5) N/A (44.9)
RRBP [52] 73.00 -3.10 91.00 -1.90 N/A N/A (54.5)

GDP-0.6 [29] 71.19 -4.96 90.71 -2.16 1.88B (54.0) N/A
HRank-74 [28] 74.98 -1.17 92.33 -0.54 2.30B (43.7) 16.15M (36.6)
HRank-71 [28] 71.98 -4.17 91.01 -1.86 1.55B (62.1) 13.77M (46.0)
HRank-69 [28] 69.10 -7.05 89.58 -3.29 0.98B (76.0) 8.27M (67.5)

SCOP [45] 75.26 -0.89 92.53 -0.34 1.85B (54.6) 12.29M (51.8)

Propose method 75.25 -0.89 92.49 -0.37 1.52B (62.8) 11.05M (56.7)
72.28 -3.87 90.93 -1.93 0.95B (76.7) 8.02M (68.6)

models’ decision boundary when removing a fixed set of
1000 neurons as selected among the considered pruning
criteria. This demonstrates how the toy models’ decision
boundaries change under influence of pruning with all five
criteria. We can observe that both the Taylor and gradient
measures degrade the model significantly whereas weight
and LRP preserve the decision boundary from the pruned
models reasonably except for the area where classify be-
tween 1) class No. 0 (brown) and class No. 2 (green) and
2) between class No. 0 and class No. 3 (black). On the
other hand, we can clearly see that in contrast to the other
property importance based pruning criteria, nuclear-norm
significantly classify multi-classes even after pruning pro-
cess, thus allows to safely remove the unimportant (w.r.t.
classification) elements. As we can see in Figure 3, NN-
based pruning results in only minimal change in the deci-
sion boundary, compared to the other criteria. Furthermore,
nuclear-norm can successfully preserve original accuracy of
94.95% up to 93.67% whereas 91.00% of weight, 84.92%
of gradient, 85.15% of Taylor expansion, and 91.30% of
LRP.

4.3. Results on CIFAR-10

To prove the expandability of the proposed nuclear-norm
based pruning approaches on the various deep learning-
related modules, such as residual connection or inception
module, we compress several popular DNNs, including
VGG-16, ResNet-56/110, GoogLeNet, and DenseNet-40.
Due to the different original performance of each literature,

we then report the performance gap between their original
model and the pruned model. All results are presented in
Table 1 on the CIFAR-10 dataset.

VGG-16. We first test on the basic DNN architec-
ture, VGG-16, which is commonly used as a standard ar-
chitecture. It can verify the efficiency of the proposed
pruning method on the consecutive convolutional block.
For a fair comparison study, we adopt several conven-
tional importance-based methods – L1 [23], HRank [28],
SSS [16], Variational CNN et al. [51], and GAL [30] –
in this experiment. We reached initial Top-1 accuracy of
93.96% with 313.73 million of FLOPs and 14.98 million
of parameters. VGG-16 consists of 13 convolutional blocks
with 4224 convolutional filters and 3 fully-connected layers.
In terms of complexity, VGG-16 with batch normalization
contains 313.73 million of FLOPs and 14.98 million of pa-
rameters initially.

The proposed nuclear-norm based pruning method out-
performs previous conventional pruning approaches, espe-
cially on the performance and the FLOPs as well as pa-
rameter reduction. Most of the conventional pruning ap-
proaches could compress more than 70% of the parame-
ters, while they could not accelerate the VGG-16 model
effectively. On the other hand, the proposed method could
yield a highly accelerated model but with a tiny perfor-
mance drop. To be more specific, GAL [30] accelerates the
baseline model by 45.2% and 39.6% while it compresses
82.2% and 77.6% of the model with 90.73% and 92.03%
of the performance. However, the proposed method yields



the pruned model with 66.6% reduced FLOPs (104.67M)
and 80.9% reduced parameters (2.86M) with only 0.48%
of accuracy drop from scratch, which outperforms in all of
the aspects (performance, acceleration, and compression).
Compared to the recent property importance-based method,
HRank, which also uses the rank property for pruning, the
proposed method achieves the competitive performance ac-
celeration(93.48% vs. 92.34% and 104.67M vs. 108.61M)
but with a similar compress ratio.

ResNet-56/110 The residual connection of the ResNet is
consists of an element-wise add layer, requiring the same
input shape. For this reason, pruning on ResNet needs to be
carefully managed compared to pruning other conventional
sequential model. To equalize those inputs of the element-
wise add operation of the ResNet, we prune common in-
dices of the connected convolutional layer. By using the
nuclear-norm based pruning method and the above pruning
strategy, we could yield a faster and smaller model than the
other approaches.

Initial Top-1 accuracies of ResNet-56 / 110 are 93.26 /
93.50% with 125.49 / 252.89 million of FLOPs and 0.85 /
1.72 million of parameters, respectively. Compared to the
baseline ResNet-56 model and the compressed model by
previous pruning approaches, the pruned model with the
proposed method achieves 0.87% higher performance but
with similar compression and acceleration rate (40.4% of
FLOPs and 45.9% of parameters). Most of the conventional
pruning approaches could not exceed the performance of
the original model except HRank (93.52% of Top-1 accu-
racy). However, the compression and acceleration ratio of
Hrank is comparatively low (29.3% of FLOPs and 16.8% of
parameters). On the other hand, the proposed method could
exceed the original performance (94.13%) with similar or
more acceleration and compression rate (40.4% of FLOPs
and 45.9% of parameters reduced).

Furthermore, the compressed ResNet-110 also outper-
forms the baseline model by 1.11% with 40.8% of accelera-
tion rate and 52.9% of compression rate. Similar to ResNet-
56, the NN based pruning method achieves the highest per-
formance on ResNet-110 with a similar acceleration and
compression ratio. On the other hand, the conventional
pruning approaches yield around 92.55% - 94.23% of Top-
1 accuracies while the pruned model contains around up to
0.70 - 1.16 million of compressed parameters and 105.70
- 155 million of accelerated FLOPs. Similar to the com-
pressed model of the proposed method, HRank also out-
performs the baseline accuracy, but with the larger and
slower model compared to our method. In conclusion, the
compressed model of the proposed method outperforms the
baseline of both ResNet-56/110, which has the potential to
be compressed or accelerated more without performance
deterioration.

GoogLeNet Unlike the residual connection, the input

Figure 4. Comparison study of Top-1 and Top-5 accuracies with
1) small (=batch of 10), 2) easy (=batch of 1), 3) hard (=batch of
1) dataset with five different neural network architectures.

kernel size of the concatenation module does not have to
be equivalent, therefore, coping with the inception module
is relatively straightforward. We initially achieved Top-1 ac-
curacy of 95.05%, 1.52 billion of FLOPs, and 6.15 million
of parameters. The proposed nuclear-norm based method
greatly reduces the model complexity (70.4% of FLOPs
and 73.5% of parameters) while it outperforms the baseline
model (95.11% vs. 95.05%).

GoogLeNet with the proposed pruning approach could
yield the highest performance (95.11%) with the most lim-
ited number of parameters (73.5%). HRank reaches the per-
formance of 94.07%, while it accelerates around 70.4%, but
the proposed method returns 1.04% higher performance and
prune an additional 0.23M of the parameters. The perfor-
mance and the complexity of the nuclear-norm based prun-
ing method indicate that the GoogLeNet can be compressed
and accelerated more with tolerable performance drop. It
demonstrates its stability to compress and accelerate the in-
ception module without performance degradation.

DenseNet-40 The original model contains 40 layers with
a growth rate of 12, it achieves 94.81% on the CIFAR-
10 dataset with 282.00M of FLOPs and 1.04M of pa-
rameters. The channel-wise concatenation module of the
DenseNet-40 is also treated similarly to the inception mod-
ule of GoogLeNet. We followed the global pruning ratio of
HRank. As a result, the proposed method could outperform
by 0.38% with the same amounts of FLOPs and parameters.
The compressed model could not exceed the performance of
Network slimming, however, the FLOP compression rates
of the proposed model could be accelerated by 22.59M.

4.4. Results on ImageNet

We also test the performance with our proposed criterion
on ImageNet with a popular DNN, ResNet-50. Compari-
son of pruning ResNet-50 on ImageNet by the proposed
method and other existing methods presented can be seen
in the Table 2 where we report Top-1 and Top-5 accuracies,
as well as FLOPs and parameters reduction. Initial perfor-
mance of ResNet-50 on ImageNet is 76.15% and 92.87%
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Figure 5. Results of Kendall tau distance between filter ranking lists of two neighbour batch sizes. Here, values with y-axis is close to 0
when paired observations between two neighbour batches have a similar rank order and vice versa.

of Top-1 and Top-5 accuracies with 4.09 billion of FLOPs
and 25.50 million of parameters. Compare with other ex-
isting pruning methods, it is clearly observed that our pro-
pose method achieves better performance in all aspects. By
pruning 62.8% of FLOPs and 56.7% of parameters from
original ResNet-50 we only lose 0.89% and 0.37% in Top-1
and Top-5 accuracies while compressing 2.69× of FLOPs
and 2.30× of parameters at the same time. When com-
pressing the model aggressively, we could achieve 72.28%
and 90.93% of Top-1 and Top-5 accuracies while reducing
76.7% of FLOPs and 68.6% of parameters which still rep-
resent a reasonable result.

4.5. Ablation study

We further conduct two additional ablation studies in the
perspectives of the data quality and quantity to see whether
our proposed method also yields stable performance regard-
less of two properties for the practical industry issue. These
would be the critical points when you encounter 1) lack of
data, 2) dataset with overconfidence or uncertainty for the
efficient pruning. We test on two more scenarios with mod-
ern neural network architectures to see the effect of rank
consistency.

Results in data quality First, we see if our proposed
method can achieve reasonable performances regardless of
data quality. These results demonstrate that the performance
of nuclear-norm based pruning is stable and independent of
the data quality. Among the first 10 batches, we select a sin-
gle batch of samples with 1) the lowest loss (called “easy”
samples) and 2) the highest loss (called “hard” samples).
In the previous pruning or neural architecture search (NAS)
literatures, they use a small proxy dataset for searching and
pruning the models, which means that it also gives a great
impact with respect to pruning efficiency [3].

Figure 4 shows comparison results of the Top-1 and Top-
5 accuracy across small-batch (= 10), easy (= 1) and hard (=
1) samples on five different network architectures. We can
observe that by using only a batch with easy as well as hard
samples, our first ablation study found no significant dif-
ferences across three different conditions (i.e. small-batch
vs. easy vs. hard). This experiment result demonstrates that

competitive performance can be produced by NN based fil-
ter pruning regardless without considering data quality for
the efficient pruning.

Results in data quantity From the practical point of
view, compared to ImageNet, PASCAL VOC [6], and
COCO [31], most of the private dataset have a smaller
amount of data quantity which might be not guaranteed to
be optimal for efficient pruning. In this manner, one of the
interesting points in the pruning community is to see how
large the amount of dataset we need for the proper pruning
in terms of data quantity. Therefore, to evaluate the stabil-
ity of the proposed criterion by data quantity, we perform a
statistical test on 4 convolutional layers at regular intervals,
called Kendall tau distance, to measure the pairwise simi-
larity of two filter ranking lists of neighbour batches based
on nuclear-norm to see the evolutionary change in increas-
ing batch size. The equation for Kendall tau distance can be
expressed as follows:

K(τ1, τ2) =
1

n× (n− 1)

∑
(j,s),j 6=s

K∗js(τ
1, τ2) (6)

where K∗js(τ
1, τ2) is assigned to 0 if xj , xs are in the same

order in τ1 and τ2 and 1 otherwise.
We empirically observe that the ranking order gener-

ated by the proposed criterion is stable and independent
of the data quantity. Figure 5 shows the similarity be-
tween neighbour of batches with Kendall tau distance. Here,
we can observe that for ResNet-56/110, DenseNet-40, and
GoogLeNet, there is a very close similarity of ranking or-
der before batch of ten which means the proposed method
extracts stable ranking order indices layer-wisely, whereas
VGG-16 observes the higher similarity between neighbour
of batches after batch indices of 50 which indicates that it
needs more data to get the stable ranking order.

5. Conclusion
Behind the remarkable growth of modern deep neural

networks, millions of trainable parameters remain an un-
solved problem. After training, extremely high cost for in-



ference time remains one of the main issues in the entire
machine learning applications. In this paper, we propose a
novel energy-aware criterion which prunes filters to reduce
network complexity using nuclear-norm motivated by de-
composition/approximation based approaches. Empirically,
we demonstrated that the proposed criterion outperforms
prior works on a variety of DNN architectures in terms
of accuracy, FLOPs as well as number of compressed pa-
rameters. Furthermore, it can be applicable for the specific
scenarios which limit on data quantity (e.g. pruning after
transfer learning and few-shot learning which small amount
of dataset are required) and data quality (e.g. consisting of
over-confident/uncertainty data)

For the further research, more experiments can be done
on 1) an unified framework which pruning is followed
by decomposition of pretrained models to simultaneously
achieve small drop in accuracy (by pruning) and reduced
FLOPs and parameters for the fast inference time (by de-
composition) 2) eXplainable Artificial Intelligence (XAI)
approach using our proposed method.
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